Effective zero-dimensionality for computable metric spaces

نویسنده

  • Robert Kenny
چکیده

We begin to study classical dimension theory from the computable analysis (TTE) point of view. For computable metric spaces, several effectivisations of zerodimensionality are shown to be equivalent. The part of this characterisation that concerns covering dimension extends to higher dimensions and to closed shrinkings of finite open covers. To deal with zero-dimensional subspaces uniformly, four operations (relative to the space and a class of subspaces) are defined; these correspond to definitions of inductive and covering dimensions and a countable basis condition. Finally, an effective retract characterisation of zero-dimensionality is proven under an effective compactness condition. In one direction this uses a version of the construction of bilocated sets.

منابع مشابه

A Note on Closed Subsets in Quasi-zero-dimensional Qcb-spaces

We introduce the notion of quasi-zero-dimensionality as a substitute for the notion of zero-dimensionality, motivated by the fact that the latter behaves badly in the realm of qcb-spaces. We prove that the category QZ of quasi-zero-dimensional qcb0-spaces is cartesian closed. Prominent examples of spaces in QZ are the spaces of the Kleene-Kreisel continuous functionals equipped with the respect...

متن کامل

A Note on Closed Subsets in Quasi-zero-dimensional Qcb-spaces (Extended Abstract)

We introduce the notion of quasi-zero-dimensionality as a substitute for the notion of zero-dimensionality, motivated by the fact that the latter behaves badly in the realm of qcb-spaces. We prove that the category QZ of quasi-zero-dimensional qcb0-spaces is cartesian closed. Prominent examples of spaces in QZ are the spaces in the sequential hierarchy of the Kleene-Kreisel continuous functiona...

متن کامل

Dugundji systems and a retract characterization of effective zero-dimensionality

In a previous paper, the author considered several conditions for effective zero-dimensionality of a computable metric space X; each of the (classically equivalent) properties of having vanishing small or large inductive dimension, or covering dimension, or having a countable basis of clopen sets, can be interpreted as multi-valued operations, and the computability of these operations was shown...

متن کامل

Local Computability of Computable Metric Spaces and Computability of Co-c.e. Continua

We investigate conditions on a computable metric space under which each co-computably enumerable set satisfying certain topological properties must be computable. We examine the notion of local computability and show that the result by which in a computable metric space which has the effective covering property and compact closed balls each co-c.e. circularly chainable continuum which is not ch...

متن کامل

The Classification Problem for Compact Computable Metric Spaces

We adjust methods of computable model theory to effective analysis. We use index sets and infinitary logic to obtain classificationtype results for compact computable metric spaces. We show that every compact computable metric space can be uniquely described, up to an isomorphism, by a computable Π3 formula, and that orbits of elements are uniformly given by computable Π2 formulas. We show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015